p-group, metabelian, nilpotent (class 4), monomial
Aliases: C42⋊2C4, C23.3D4, (C2×D4)⋊2C4, C23⋊C4⋊2C2, C4⋊1D4.2C2, C2.8(C23⋊C4), (C2×D4).3C22, C22.11(C22⋊C4), (C2×C4).1(C2×C4), SmallGroup(64,34)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊C4
G = < a,b,c | a4=b4=c4=1, ab=ba, cac-1=a-1b, cbc-1=a2b >
Character table of C42⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | |
size | 1 | 1 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ12 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ13 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
(5 6 7 8)
(1 4 2 3)(5 6 7 8)
(1 5)(2 7)(3 8 4 6)
G:=sub<Sym(8)| (5,6,7,8), (1,4,2,3)(5,6,7,8), (1,5)(2,7)(3,8,4,6)>;
G:=Group( (5,6,7,8), (1,4,2,3)(5,6,7,8), (1,5)(2,7)(3,8,4,6) );
G=PermutationGroup([[(5,6,7,8)], [(1,4,2,3),(5,6,7,8)], [(1,5),(2,7),(3,8,4,6)]])
G:=TransitiveGroup(8,30);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 11 15 6)(2 12 16 7)(3 9 13 8)(4 10 14 5)
(1 10 11 2)(3 7 9 14)(4 13 12 8)(5 6 16 15)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11,15,6)(2,12,16,7)(3,9,13,8)(4,10,14,5), (1,10,11,2)(3,7,9,14)(4,13,12,8)(5,6,16,15)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11,15,6)(2,12,16,7)(3,9,13,8)(4,10,14,5), (1,10,11,2)(3,7,9,14)(4,13,12,8)(5,6,16,15) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,11,15,6),(2,12,16,7),(3,9,13,8),(4,10,14,5)], [(1,10,11,2),(3,7,9,14),(4,13,12,8),(5,6,16,15)]])
G:=TransitiveGroup(16,143);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 4 7 6)(2 3 8 5)(9 16 11 14)(10 13 12 15)
(1 12 7 10)(2 14 8 16)(3 9)(4 15)(5 11)(6 13)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4,7,6)(2,3,8,5)(9,16,11,14)(10,13,12,15), (1,12,7,10)(2,14,8,16)(3,9)(4,15)(5,11)(6,13)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4,7,6)(2,3,8,5)(9,16,11,14)(10,13,12,15), (1,12,7,10)(2,14,8,16)(3,9)(4,15)(5,11)(6,13) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,4,7,6),(2,3,8,5),(9,16,11,14),(10,13,12,15)], [(1,12,7,10),(2,14,8,16),(3,9),(4,15),(5,11),(6,13)]])
G:=TransitiveGroup(16,167);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 6 2 5)(3 8 4 7)(9 12 11 10)(13 16 15 14)
(1 13 3 9)(2 15 4 11)(5 14 8 12)(6 16 7 10)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,6,2,5)(3,8,4,7)(9,12,11,10)(13,16,15,14), (1,13,3,9)(2,15,4,11)(5,14,8,12)(6,16,7,10)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,6,2,5)(3,8,4,7)(9,12,11,10)(13,16,15,14), (1,13,3,9)(2,15,4,11)(5,14,8,12)(6,16,7,10) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,6,2,5),(3,8,4,7),(9,12,11,10),(13,16,15,14)], [(1,13,3,9),(2,15,4,11),(5,14,8,12),(6,16,7,10)]])
G:=TransitiveGroup(16,168);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 7 3 6)(2 8 4 5)(9 14 11 16)(10 15 12 13)
(1 16 8 13)(2 12 7 9)(3 14 5 15)(4 10 6 11)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,7,3,6)(2,8,4,5)(9,14,11,16)(10,15,12,13), (1,16,8,13)(2,12,7,9)(3,14,5,15)(4,10,6,11)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,7,3,6)(2,8,4,5)(9,14,11,16)(10,15,12,13), (1,16,8,13)(2,12,7,9)(3,14,5,15)(4,10,6,11) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,7,3,6),(2,8,4,5),(9,14,11,16),(10,15,12,13)], [(1,16,8,13),(2,12,7,9),(3,14,5,15),(4,10,6,11)]])
G:=TransitiveGroup(16,169);
C42⋊C4 is a maximal subgroup of
D4≀C2 C42⋊6D4 C42⋊Dic3 (C2×D4)⋊F5
(C4×C4p)⋊C4: C4⋊1D4⋊C4 (C4×C8)⋊6C4 C42⋊5Dic3 C42⋊3Dic5 C42⋊F5 C42⋊3Dic7 ...
(C2×D4).D2p: C42.D4 C8⋊C4⋊5C4 C4⋊Q8⋊29C4 C24.39D4 C4.4D4⋊C4 C42.13D4 C23.2D12 C23.2D20 ...
C42⋊C4 is a maximal quotient of
(C2×D4)⋊C8 C42⋊3C8 C24.4D4 C24.6D4 C8⋊C4⋊C4 (C2×D4).D4 (C4×C8).C4 (C2×Q8).D4 (C2×D4)⋊F5
C23.D4p: C24.D4 C23.2D12 C23.2D20 C23.2D28 ...
(C4×C4p)⋊C4: C4⋊1D4⋊C4 (C4×C8)⋊6C4 C42⋊5Dic3 C42⋊3Dic5 C42⋊F5 C42⋊3Dic7 ...
action | f(x) | Disc(f) |
---|---|---|
8T30 | x8-4x7-4x6+26x5-x4-46x3+13x2+15x+1 | 55·113·313 |
Matrix representation of C42⋊C4 ►in GL4(ℤ) generated by
0 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | -1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,Integers())| [0,-1,0,0,1,0,0,0,0,0,-1,0,0,0,0,-1],[0,1,0,0,-1,0,0,0,0,0,0,1,0,0,-1,0],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;
C42⋊C4 in GAP, Magma, Sage, TeX
C_4^2\rtimes C_4
% in TeX
G:=Group("C4^2:C4");
// GroupNames label
G:=SmallGroup(64,34);
// by ID
G=gap.SmallGroup(64,34);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,332,158,681,255,1444]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^4=1,a*b=b*a,c*a*c^-1=a^-1*b,c*b*c^-1=a^2*b>;
// generators/relations
Export
Subgroup lattice of C42⋊C4 in TeX
Character table of C42⋊C4 in TeX